
Static Code Analysis
can change your life (for the better)

Code review

 Code review is one of the oldest and safest methods of

defect detection.

 It deals with joint attentive reading of the source code

and giving recommendations on how to improve it.

 Reveals errors or code fragments that can become

errors in future.

 Analysis without executing code

Static Code Analysis

 Static code analysis is the process of detecting errors

and defects in software's source code.

 Static analysis can be viewed as an automated code

review process.

 Clears main disadvantage of joint code review – high

cost

Static vs Dynamic

Static Analysis

 Examine code

 Handles unfinished

code

 Can find backdoors

 Potentially complete

Dynamic Analysis

 Run code

 Code not needed, eg,

embedded systems

 Has few(er) assumptions

 Covers end-to-end or system

tests

Tasks solved by SCA

 Detecting errors in programs

 Recommendations on code formatting

 Metrics computation

Different Static Analyzers Are

Used For Different Purposes

 To check intellectual property violation

 By developers to decide if anything needs to be fixed

(and learn better practices)

 By auditors or reviewer to decide if it is good enough for

use

Why?

 One of a collection of strategies for improving code

quality

 Code compliance to company wide standard

 Identify (potential) bugs in code - Identify potential

issues earlier in development cycle

 Identify design and implementation problems

 Peer education

Other benefits

 Full code coverage (code fragments that get control

very rarely)

 Doesn't depend on the compiler

 Doesn't depend on the environment

 Find ghost consequences of Copy-Paste usage

Increase code quality i.e.

reduces WFT/min ratio

SCA – how it is done?

 For unmanaged code – source code is examined

 For managed code – MSIL is examined

 Different tools – different approaches

 On compiled code after assembly is built

 On compiled code during development

StyleCop

 Static Code Analysis - C# only

 Written by Microsoft

 Different than FxCop

 Free (as in speech)

 Not built in to Visual Studio

 Enforces style guidelines

Rules

 Documentation

 Layout

 Maintainability

 Naming

 Ordering

 Readability

 Spacing

FxCop

FxCop is a code analysis tool that checks .NET managed code
assemblies for conformance to the Microsoft .NET Framework
Design Guidelines. It uses reflection, MSIL parsing, and callgraph
analysis to inspect assemblies for more than 200 defects in the
following areas:

 Library design

 Localization

 Naming conventions

 Performance

 Security

Static code analysis – fear of

change

 We already do code reviews

 Way too many rules

 Not clear what rules to use

 We must have different rules

 Too many violations to fix

 Who’s going to fix the violations?

 Hindrance to creativity

 Yet another bureaucratic invention

Implementing static code

analysis

 Identifying appropriate rules

 Handling backlog

 Setting up the process

 Educating the team

 Staying agile!

Disadvantages

 Static analysis is usually poor regarding diagnosing

memory leaks

 Hard to find concurrency errors (execute a part of the

program)

 False-positive reports

 Dynamic analysis helps

Writing clean code

Why Write Clean Code?

 Writing clean code reduces number of defects.

 Writing clean code reduces cost of change.

 Clean code is easier to learn.

 Writing clean code helps manage complexity (keeps

code complexity to a minimum).

 In terms of software development, there are two

different types of complexity:

 Essential Complexity – Revolves around the fact that

software is intrinsically complex, and no methodology or

tool is going to eliminate this complexity.

 Accidental Complexity – Occurs due to a mismatch of

paradigms, methodologies, and/or tools in our application.

 Solution:

 Minimize the amount of essential complexity that anyone’s

brain has to deal with at any one time.

 Keep accidental complexity from needlessly proliferating.

Managing Complexity

 Our primary audience are fellow humans, not

computers.

 Bad code breeds more bad code.

 Design as if designing from scratch, never pick a

solution that is easiest to implement, but the solution

easiest to maintain.

 Errors should be detected as soon as possible.

 LeBlanc’s law: Later equals never.

Always Keep in Mind

 Avoid copy and paste (duplicating) while you are writing

code.

 Duplicate code requires parallel modifications.

 If you are using copy and paste while you’re coding, you

are probably committing a design error.

 It also violates the DRY (Don't Repeat Yourself) principle.

Avoid Copy and Paste

Avoid Methods that do More

Than One Task

 Avoid writing methods that do more than one task.
Those methods can be split into multiple smaller
methods or even classes.

 Long methods (200+) and methods with long argument lists
(5+) usually do more than one thing.

 Writing methods that do more than one task lowers
readability of code.

 It is hard to reuse them, which often leads to duplicated
code.

 Writing methods that do more than one task increase
accidental complexity.

 These methods are often victims of additional
improvements.

Avoid Deeply Nested Control

Structures

 Avoid writing deeply nested control structures.

 Poor use of control structures increases complexity; good
use decreases it.

 How it is often used:

if (firstCondition)

{

if(secondCondition)

{

}

}

 How it should be used:

if (firstCondition && secondCondition)

{

}

Avoid Returning Null

 Think twice before returning null.

 When writing a method, never return null for collections
and arrays, return empty arrays and collections instead.

 In case when returning an interface, consider returning a
default implementation instead of null.

 How it should be used:

Let’s say we have a software that provides a list of
documents. The list of documents can be filtered, and the last
used filter is stored for next use. Filter is defined with a
following interface:

interface IDocumentFilter

{

List<Document> Filter(List<Document> documents);

}

Avoid Returning Null

 How it should be used:

When a user starts the application last used filter is restored
with this code:

IDocumentFilter filter = filterStore.GetLastFilter();

Instead of returning null when there is no last used filter,
consider returning something like this:

class NoFilter : IDocumentFilter

{

public List<Document> Filter (List<Document>

documents)

{

return documents;

}

}

With this approach filterStore.GetLastFilter() users do
not have to worry about handling nulls.

Do not Spread Object Logic

over Multiple Classes

 Object logic should not be spread over multiple classes.
Whenever you do something complex with object's
attributes and/or methods ask yourself if these should be
object’s method.

 Not spreading object logic over multiple classes allows better
code reuse.

 How it is often used:

public double CalculateCost (Shape shape)
{

return shape.Width * shape.Height * costPerArea;
}

 How it should be used:

public double CalculateCost (Shape shape)
{

return shape.Area * costPerArea;
}

Use Assertions

 Use asserts to verify conditions that should never be false
(sanity checks, argument checks in internal/private
methods). Asserts are not present in the release build.

 Assert checks for a condition; if the condition is false, outputs
a specified message and displays a message box that shows the
call stack.

System.Debug.Assert(bool condition, string message)

 How it should be used:

public void CloseAll()
{

foreach(var window in Windows)
{

window.Close();
}
Debug.Assert(Windows.Count == 0, "All windows should

be closed");
}

Check Method Arguments

 Check method arguments for validity for all public

methods.

 Throw appropriate exceptions if arguments are not valid

(ArgumentException and its subclasses).

 Use assertions to verify argument validity for

internal/private methods.

 An important exception is the case in which the validity

check would be expensive or impractical and the

validity check is performed implicitly in the process of

doing the computation.

Be Careful When Casting With

“as”

 Syntax: animal as Cat vs. (Cat)animal

 Use “as” cast only when you have already checked type

or when dealing with failed cast uses the same code

path as dealing with null value (implementing Equals

method).

 Perfect for error propagation.

 ”As” cast returns null when cast fails, regular cast throws

an exception.

Throwing Exceptions

 Always throw correct exceptions. Never use pure

Exception. Favor the use of standard exceptions (ie

ArgumentException, ArgumentNullException,

NotSupportedException). Define new exception types in

order to hide implementation details.

 How it should be used:

GetUser method should throw UserNotFoundException,

not SQLException or FileNotFoundException.

 Don't leave the object in an inconsistent state when

throwing exceptions.

Throwing Exceptions

 Mind the callstack when re-throwing exceptions. When
you must explicitly re-throw exception wrap it in
another exception.

 How it is often used:

catch(Exception e)

{

throw e; // This overwrites callstack, use

just throw

}

 How it should be used:

catch(Exception e)

{

throw; // This overwrites callstack, use just

throw

}

Writing optimized code

 The model will someday be much bigger than the one
used on product.

 Will your part of the code work with millions of objects,
or just a couple of them?

 Will your part of the code work on one machine or in a
dual system?

 What systems will it run on in the enterprise
environment?

 If you do not know how fast some part of the code is,
make a test and run it a million times. Then try some
other code that solves the same issue, and compare the
measured results.

General Tips

 When writing a loop, ask yourself how many times it will

usually execute until exit? Is the code in the loop optimal?

 Logging is slow. Log only important information. If

preparing data for logging is time consuming, check first if

that log level is on.

 Avoid creation of unnecessary objects (an empty object

consumes 16 bytes)

 Take care of the memory alignment of structure attributes.

 Do not repack collections if it can be avoided.

 Do not create a class attribute if it is used as a local

variable.

General Tips

General Tips

 Instantiation of a large number of empty objects,

especially collections, should be avoided. In that case,

null value of the objects should be properly handled.

 If it is necessary to have an object as the class attribute

temporarily, try to clear it and set it to null as soon as it

is no longer needed.

 If you want to copy some code from another

component, ask yourself if that part of the code can be

placed somewhere in the common component?

 Try to use common code as much as possible.

List Collection

 Consider using basic array instead of List object.

 Using a list object makes an overhead of 40 bytes per instance over
an array and makes an overhead of double capacity check when an
entity is added to the list.

 Create a list object with predefined capacity whenever possible.

 By default a list object is initialized with a capacity of 0. When the
first item is added, it is reinitialized to a capacity of 4.
Subsequently, whenever the capacity is reached, the capacity is
doubled.

 How it is often used:

List<int> listObj = new List<int>();

 How it should be used:

List<int> listObj = new List<int>(157345);

 If list members are known up front, it is better to calculate the
capacity up front than to create an empty list and then populate it.

List Collection

 If the capacity of the list is not known up front, it should not be
instantiated with capacity of 0. Instead, the list should be
instantiated using the default constructor.

 How it is often used:

List<ModelCode> properties = new List<ModelCode>(0);

 How it should be used:

List<ModelCode> properties = new List<ModelCode>();

 If the capacity of the list is not known up front and elements of the
list are rarely added or removed, compact of the list should be
done after adding or removing objects, in order to decrease the
capacity of the list to the number of objects that are stored in the
list.

 How it should be used:

properties = new List<ModelCode>(properties);

List Contains Method

 Use list Contains method only when you are 100% sure that it is
always going to be a small collection. Use HashSet instead to
optimize searching for an element in a list.

 How it is often used:

List<int> listObject = new List<int>(1300154);
. . .
for (. . .)
{

if(listObject.Contains(...))
. . .

}

 How it should be used:

List<int> listObject = new List<int>(1300154);
. . .
HashSet<int> hsObject = new HashSet<int>(listObject);
for (. . .)
{

if(hsObject.Contains(...))
. . .

}

Threads

 Do not create a thread for everything. Ask yourself if the
parallel work will execute continuously, periodically or
time based?

 Use thread pool threads for some occasional jobs. Be aware
that getting a thread from the thread pool can take some
time. Sometimes even a few tens of seconds.

 Use Timers for time based triggered jobs. This will be
executed in the background in a thread taken from the
thread pool. Triggering a timer can be delayed.

 Use .Net Tasks

 Easy to use.

 Manages task scheduling.

 Manages exceptions that tasks throw.

Threads

 Each thread demands some resources. If known up front
all that a thread will do, setup the thread stack size.

 Default stack size for x64 applications is 4MB. Usually, for
small threads, 256k is enough.

 If CommandQueue class from DMS Common is used for
queueing data that will be processed from another
thread, it should be taken into consideration whether to
implement it using a dedicated thread or a thread pool
thread.

 How it should be used (case when queued data is
automatically executed in thread pool thread):

RegisteredDequeue<Object> registeredDequeuer =
commandQueue.DequeueAllFromThreadPool(WorkerMethod);

Code review checklist

Code Review Checklist

 In order to ensure that given best coding practices are followed
and quality criteria is satisfied, “Code Review Checklist
Template” document is defined

 It is comprised of inspection items mapped to prescribed best
coding practices

 As a result of code review, checklist in this document should be
completed by a Reviewer.

 It is mandatory that the Reviewer:

 Fill in basic information about code review (chapter “Code review
details”),

 Fill in “Status” field in “Code review checklist” chapter of this
document for every inspection item.

 It is mandatory that the “Status” field in “Code review checklist”
chapter of this document be updated for every one of the inspection
items;

 No blank fields in this column are permitted.

Code Review Checklist

 “Status” field value should be set in accordance with

following rules:

 N/A – Inspection item is not found in the source code

during code review.

 OK – Inspection item is found in the source code during

code review and it is properly implemented (according to

guidelines in “How to write optimized and clean code”

document).

 Issues found – Inspection item is found in the source code

during code review, but it is not properly implemented.

 Issues corrected – Inspection item is found in the source

code during code review and it was not properly

implemented, but it is corrected during code review.

Process of Adding New

Guidelines

 Any member of R&D can suggest adding new best practice
guideline.

 This suggestion should be sent to members of process team.

 If suggested guideline is going to be adopted, document “How to
write optimized and clean code” should be updated.

 If guideline is going to be part of Definition of Done (DoD), it should
be added to the “Code Review Checklist Template”.

 Members of Security Team should perform analysis about whether
FxCop rule can be created.

 In case that FxCop rule can be created, next step is to decide
whether rule is going to be created

 Final step is to create FxCop rule for added guideline and update
checklist.

Where to Go Next

❑ McConnell, Steve. Code complete. Redmond, Wash:

Microsoft Press, 2004. Print.

❑ Bloch, Joshua. Effective Java. Upper Saddle River, NJ:

Addison-Wesley, 2008. Print.

❑ Martin, Robert C. Clean code : a handbook of agile

software craftsmanship. Upper Saddle River, NJ:

Prentice Hall, 2009. Print.

Thank you for your attention

☺

